Analisis Time Series dan Perancangan Dashboard untuk Memprediksi Penjualan dengan Metode Prophet dan SARIMAX

Authors

  • Brian Khaw
  • Ricky Irwanto
  • Roni Yunis Universitas Mikroskil
  • Elly Elly

DOI:

https://doi.org/10.55601/jsm.v26i2.1797

Keywords:

time series, Prophet, SARIMAX, sales forecasting, dashboard

Abstract

Penelitian ini membahas analisis data deret waktu untuk memprediksi penjualan menggunakan metode Prophet dan SARIMAX. Metode ini dipilih karena mampu menangani pola musiman, tren, dan faktor eksternal yang penting dalam memaksimalkan akurasi prediksi penjualan. Dataset Walmart dari periode 2012-2015 digunakan sebagai data utama, sementara data eksternal diambil dari Google Trends. Penelitian ini menggunakan kerangka kerja OSEMN yang meliputi pengumpulan, pembersihan, eksplorasi, pemodelan, dan interpretasi data. Hasil evaluasi menunjukkan model SARIMAX lebih unggul pada skenario mingguan dan bulanan dengan MAPE sebesar 2,589% dan 0,930% dibandingkan model Prophet dengan MAPE sebesar 2,753% dan 1,045%. Hasil penelitian ini juga menunjukkan penambahan faktor eksogen pada kedua model ini tidak memberikan dampak yang signifikan dalam meningkatkan performa model. Hasil prediksi data penjualan divisualisasi melalui dashboard interaktif yang membantu pengguna memahami hasil prediksi secara intuitif.

References

R. Jeswani, “Predicting Walmart Sales, Exploratory Data Analysis, and Walmart Sales Dashboard,” Rochester, Dec. 2021. Accessed: Oct. 06, 2024. [Online]. Available: https://www.rit.edu/ischoolprojects/node/104009

Y. Liu, “Sales Forecasting Based on Transformer-LSTM Model,” in 5th International Conference on Computer Science and Intelligent Communication (CSIC 2023), Vancouver: Highlights in Science, Engineering and Technology, Mar. 2024, pp. 776–782. doi: 10.54097/qdavzg31.

A. Ramosaj, N. Ramosaj, and M. Widmer, “Improving Sales Forecasting by Combining Key Account Managers’ Inputs and Models Such as SARIMA, LSTM, and Facebook Prophet,” Journal of Applied Business and Economics, vol. 24, no. 6, pp. 11–22, Dec. 2022, doi: 10.33423/jabe.v24i6.5715.

C. Catal, B. Arslan, and A. Akbulut, “Benchmarking of Regression and Time Series Analysis Techniques for Sales Forecasting,” Balkan Journal of Electrical and Computer Engineering, vol. 7, no. 1, pp. 20–26, Jan. 2019, doi: 10.17694/bajece.494920.

B. Pavlyshenko, “Machine-Learning Models for Sales Time Series Forecasting,” Data (Basel), vol. 4, no. 1, pp. 1–11, Jan. 2019, doi: 10.3390/data4010015.

Y. Kuang, “Time Series Data Forecasting: Alcohol Sales Prediction Based on Prophet,” in 5th International Conference on Computer Science and Intelligent Communication (CSIC 2023), Vancouver: Highlights in Science, Engineering and Technology, Mar. 2024, pp. 597–601. doi: 10.54097/x446dk79.

E. Žuni?, K. Korjeni?, K. Hodzic, and D. Donko, “Application of Facebook’s Prophet Algorithm for Successful Sales Forecasting Based on Real-world Data,” International Journal of Computer Science & Information Technology, vol. 12, no. 2, pp. 23–36, Apr. 2020, doi: 10.5121/ijcsit.2020.12203.

S. Kwarteng and P. Andreevich, “Comparative Analysis of ARIMA, SARIMA and Prophet Model in Forecasting,” Research & Development, vol. 5, no. 4, pp. 110–120, Oct. 2024, doi: 10.11648/j.rd.20240504.13.

A. Ramosaj, N. Ramosaj, and M. Widmer, “How to Improve Accessories Sales Forecasting of a Medium-Sized Swiss Enterprise? A Comparison Between Statistical Methods and Machine Learning Algorithms,” Journal of Applied Business and Economics, vol. 26, no. 4, pp. 145–167, Sep. 2024, doi: 10.33423/jabe.v26i4.7261.

F. Suprata, “Data Storytelling with Dashboard: Accelerating Understanding Through Data Visualization in Financial Technology Company Case Study,” Jurnal METRIS, vol. 20, no. 1, pp. 1–10, Jul. 2019, doi: 10.25170/metris.v20i1.2375.

F. Petropoulos et al., “Forecasting: theory and practice,” Int J Forecast, vol. 38, no. 3, pp. 705–871, Jul. 2022, doi: 10.1016/j.ijforecast.2021.11.001.

K. Y. Wen, M. H. Joseph, and V. Sivakumar, “Big Mart Sales Prediction using Machine Learning,” EAI Endorsed Transactions on Internet of Things, vol. 10, pp. 1–6, Jun. 2024, doi: 10.4108/eetiot.6453.

R. Sen and S. Das, Computational Finance with R. Singapore: Springer Nature Singapore, 2023. doi: 10.1007/978-981-19-2008-0.

A. Nielsen, Practical Time Series Analysis: Prediction with Statistics and Machine Learning, First edition. Sebastopol, CA: O’Reilly Media, 2019. Accessed: Nov. 04, 2024. [Online]. Available: https://www.oreilly.com/library/view/practical-time-series/9781492041641/

Tableau, “Time Series Analysis: Definition, Types & Techniques | Tableau.” Accessed: Oct. 23, 2024. [Online]. Available: https://www.tableau.com/analytics/what-is-time-series-analysis

V. Kotu and B. Deshpande, “Time Series Forecasting,” in Data Science, Second Edition., Elsevier, 2019, ch. 12, pp. 395–445. doi: 10.1016/B978-0-12-814761-0.00012-5.

Meta Open Source, “Prophet | Forecasting at scale.” Accessed: Nov. 01, 2024. [Online]. Available: https://facebook.github.io/prophet/

J. Shen, D. Valagolam, and S. McCalla, “Prophet forecasting model: a machine learning approach to predict the concentration of air pollutants (PM 2.5 , PM 10 , O 3 , NO 2 , SO 2 , CO) in Seoul, South Korea,” PeerJ, vol. 8, pp. 1–18, Sep. 2020, doi: 10.7717/peerj.9961.

B. K. Jha and S. Pande, “Time Series Forecasting Model for Supermarket Sales using FB-Prophet,” in 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode: IEEE, Apr. 2021, pp. 547–554. doi: 10.1109/ICCMC51019.2021.9418033.

M. Lounis, “Predicting Active, Death and Recovery Rates of COVID-19 in Algeria Using Facebook’ Prophet Model,” Mar. 01, 2021, Preprints 2021. doi: 10.20944/preprints202103.0019.v1.

F. Oktavia and A. Witanti, “Implementasi Prophet Forecasting Model Dalam Prediksi Kualitas Udara Daerah Istimewa Yogyakarta,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 11, no. 1, pp. 64–74, 2024, doi: 10.35957/jatisi.v11i1.6804.

Meta Open Source, “Seasonality, Holiday Effects, And Regressors | Prophet.” Accessed: Nov. 03, 2024. [Online]. Available: https://facebook.github.io/prophet/docs/seasonality,_holiday_effects,_and_regressors.html#additional-regressors

Meta Open Source, “Diagnostics | Prophet.” Accessed: Nov. 03, 2024. [Online]. Available: https://facebook.github.io/prophet/docs/diagnostics.html#cross-validation

L. Döring, F. Grumbach, and P. Reusch, “Optimizing Sales Forecasts through Automated Integration of Market Indicators,” ArXiv, pp. 1–21, May 2024, doi: 10.48550/arXiv.2406.07564.

C. D. Mojica-Cabeza, C. E. García-Sánchez, R. Silva-Rodríguez, and L. García-Sánchez, “A review of the different boiler efficiency calculation and modeling methodologies,” Informador Técnico, vol. 86, no. 1, pp. 69–93, Oct. 2021, doi: 10.23850/22565035.3697.

T. Andrianajaina, D. T. Razafimahefa, R. Rakotoarijaina, and C. G. Haba, “Grid Search for SARIMAX Parameters for Photovoltaic Time Series Modeling,” Global Journal of Energy Technology Research Updates, vol. 9, pp. 87–96, Dec. 2022, doi: 10.15377/2409-5818.2022.09.7.

K. Khadka, J. Chandrasekaran, Y. Lei, R. N. Kacker, and D. R. Kuhn, “A Combinatorial Approach to Hyperparameter Optimization,” in Proceedings of the IEEE/ACM 3rd International Conference on AI Engineering - Software Engineering for AI, New York, NY, USA: ACM, Apr. 2024, pp. 140–149. doi: 10.1145/3644815.3644941.

F. I. Sanjaya and D. Heksaputra, “Prediksi Rerata Harga Beras Tingkat Grosir Indonesia dengan Long Short Term Memory,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 7, no. 2, pp. 163–174, Aug. 2020, doi: 10.35957/jatisi.v7i2.388.

C. Wiedyaningsih, E. Yuniarti, and N. P. V. Ginanti Putri, “Comparison of Forecasting Drug Needs Using Time Series Methods in Healthcare Facilities: A Systematic Review,” Jurnal Farmasi Sains dan Praktis, vol. 10, no. 2, pp. 156–165, Aug. 2024, doi: 10.31603/pharmacy.v10i2.11145.

H. Belyadi and A. Haghighat, Machine Learning Guide for Oil and Gas Using Python. Cambridge, MA: Elsevier, 2021. doi: 10.1016/C2019-0-03617-5.

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput Sci, pp. 1–24, Jul. 2021, doi: 10.7717/peerj-cs.623.

M. Dmytryshyn, “Development of a predictive model for sales forecasting of perishable food products,” Ukrainian Catholic University, 2023.

P. Polina, S. Ganesan, L. Karunarathne, and N. Somasiri, “Time Series Analysis for Tractor Sales using SARIMAX and Deep Learning Models,” International Journal of Computer Communication and Informatics, vol. 6, no. 1, pp. 27–57, Jul. 2024, doi: 10.34256/ijcci2413.

M. N. Trisolvena, M. Masruroh, and Y. M. Ginting, “Product Demand Forecast Analysis Using Predictive Models and Time Series Forecasting Algorithms on the Temu Marketplace Platform,” International Journal Software Engineering and Computer Science (IJSECS), vol. 4, no. 2, pp. 430–439, Aug. 2024, doi: 10.35870/ijsecs.v4i2.2774.

S. Saleem, N. Hasan, A. Khattar, P. R. Jain, T. K. Gupta, and M. Mehrotra, “DeLTran15: A Deep Lightweight Transformer-based Framework for Multiclass Classification of Disaster posts on X,” IEEE Access, vol. 12, pp. 1–18, Oct. 2024, doi: 10.1109/ACCESS.2024.3478790.

Downloads

Published

31-10-2025